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ABSTRACT 

(I) We construct a strongly minimal expansion of an algebraically closed 

field of a given characteristic. Actually we show a much more general 

result, implying for example the existence of a strongly minimal set with 

two different field structures of distinct characteristics. 

(2) A strongly minimal expansion of an algebraically closed field that 

preserves the algebraic closure relation must be an expansion by (algebraic) 

constants. 

1. I n t r o d u c t i o n  

The first result mentioned in the abstract should be seen as part  of the at tempt 

to understand the nature of Rl-categorical theories, following the refutation of 

Zil'ber's conjecture [HI. Specifically it refutes a conjecture made by Poizat as 

part  of a program to classify simple groups of finite Morley rank avoiding the full 

Zil'ber conjecture. [P1]. It seems that more experience with such constructions 

will have to be ginned before a general program can be reformulated. 

The second result was obtained several years ago as a lemma in the classifica- 

tion of the geometries of strongly minimal sets of Zil'ber type (yet unpublished). 

It is closely related to the theorem of [M], which was obtained independently, by 

a somewhat different method. It seemed appropriate to include it in the present 

paper because of its similarity to the definable multiplicity property considered 

in section 2. For fields, in dimension 1, the DMP states that curves remain 
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strongly minimal under specialization of the parameters. The result (2) is that 

they remain so in strongly minimal expansions of the structure. However, the 

definable multiplicity property has an elementary proof, whereas (2) appears to 

require some use of Riemann-Roch. 

All structures considered in this paper will be assumed to have a countable 

language. In section 4 we will show that any two strongly minimal sets with the 

definable multiplicity property can be amalgamated to a single strongly mini- 

mal set. This provides many examples of strongly minimal sets, not of classical 

type, with interesting geometries. (Unlike the "flat" geometry of the structure 

constructed in [H].) The geometry can be seen as "relatively flat" over the ge- 

ometries of the given strongly minimal sets, however. In particular it can be 

shown that if G is a connected group definable in the strongly minimal amal- 

gam of D1, D2 then there exist connected groups G1, G2 definable over D1, Dz 

respectively, and a definable surjective group homomorphism f:  G ~ G1 x G2 

with finite (central) kernel. It would be good to have the sharper result with the 

arrow reversed f :  G1 x G2 ~ G). This would require a closer analysis. 

It seems likely that the construction of Theorem 1 can be generalized to prove 

the following. Suppose T1, T2 are strongly minimal theories with the DMP in 

languages L1,L2,L1 t3 L2 = Lo, T1 [ Lo = T2 [ Lo = To, and To is the theory of 

infinite vector spaces over a finite field F. Then there exists a strongly minimal 

extension of T1 O 7"2. Here is a simple example showing that this is false for 

arbitrary To. Let To be the theory of divisible torsion free Abelian groups with 

two distinguished elements c, d independent over the rationals. Let Li = LU {oq), 

Ti l- 't'Oli is an endomorphism, oti(c) = d", 7'1 F "a~ + 1 = 0", T2 }- "a2 2 + 1 is 

surjective." The kernel of a l  - (~2 is infinite and of infinite index in any model of 

Ta u T~. 

Another example: Ti = theory of free action of Gi on an infinite set. 

G1 = (Z/2Z) 2, G2 = (Z/4Z), To = theory of an equivalence relation with 4 

element classes. In this example, a strongly minimal set of To fails to remain 

strongly minimal in both T1 and T2. 

A final variation that is likely quite accessible at this point is the construction 

of a strongly minimal set supporting a field structure in dimension 2 but not in 

dimension 1 (conjecture of Berline-Lascar). Such a structure would presumably 

be "flat" in all odd dimensions, but not in the even ones. 

For notation and basic results the reader is referred to [Pi]. 



Vol. 79, 1 9 9 2  EXPANSIONS OF ALGEBRAICALLY CLOSED FIELDS 

2. T h e  def inable  mul t ip l i c i ty  p r o p e r t y  
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Definition: A strongly minimal set D has the def inable  mul t ip l i c i ty  prop-  

e r ty  (DM) if whenever ~(~, h) defines a subset of D n of rank k, multiplicity m, 

then for some ¢ E tp(~/O), for all h', if ¢(h') then ~(~, h') has rank k, multiplicity 

m .  I 

An equiva/ent statement: Let f:  U --  V be a definable map between definable 

sets. Then for any k, m,{v E V : f - l ( v )  has rank k, multiplicity m} is a definable 

subset of V. I 

Other equivalent statements can be formulated in the language of reduction of 

structure groups of finite coverings. 

Remarks: 
(1) The corresponding property for rank alone is true in any Rl-categorical 

theory [B]. 

(2) If D is disintegrated, then D has DM. 

(3) If D is locally modular, then for some definable equivalence relation E with 

finite classes, D / E  has the DM. 

(4) A locally modular D need not have the DM: let V be a vector space over 

the rationals, with distinguished element a0. Let D = V × {0,1} , 7r: D --* V the 

projection, and define f :  D ~ D by f(v, i) = (v + a, i). (D, V, ~r, f )  is strongly 

minimal. Let C(v) = {(d~,d2): ~r(dl) - ~r(d2) = v}. For generic v, C(v) is 

strongly minimal; but C(nao) has multiplicity 2 for all n E Z. 

(5) Problem: does (3) hold for all strongly minimal sets? 

(6) The definable multiplicity property holds for D totally categorical. 

(7) The definable multiplicity property holds for D if it holds for an expansion 

by constants of D. 

(8) If the definable multiplicity property holds, then it applies also to imaginary 

elements. I 

Remark (7) is a consequence of the open mapping theorem; (2) and (3) will be 

proved following lemma 1. To see (8), use (7) to add constants to the language. 

Then for every definable set E of imaginaries there exists a definable subset E ~ 

of D n (for some n) and a definable surjective finite-to-one map f :  E' ---* E. We 

may choose E a to have the same rank and multiplicity as E,  and then the result 

for E follows from the one for E'.  
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LEMMA 1: Let D be strongly rain/real. Assume that whenever ~(~,~) defines a 

strongly minimal subset of D" then for some ¢ q tp(a/0),  for all a' such that 

¢ ( a ' ) ,  a') is strongly minimal. Then T the DMP. 

Proof: By induction on k and m. The case k = 0 always holds trivially. 

Assume the property holds for rank k, multiplicity 1. If T(~,, 2) has rank k, 

multiplicity m > 1, one can find a' _.D a and T1 , . . . ,Tm such that ~(~,a)  - 

(~I(Y', a ' ) 6 . . .  6Tm(~, a--')), and Ti(Y', a ~) has rank k, multiplicity 1. The defin- 

ability property for T then follows from the corresponding property for the Ti's. 

Assume the property holds for ranks < k, where k > 1. Let ~(~, 2) define a sub- 

set of D"  of rank k, multiplicity 1. By Remark 7, we may expand the language 

by constants, so that acl(0) is a model. Let b = (b~, . . . ,  bn) be a generic solution 

of  a). We m a y  as sume  b , _ , / 2 )  = k - 1, rk(b/a ,  b l , . . . ,  b k - , )  = 1. 

Since acl(a, b l , . . . ,  bk-~) is a model, there exists b' E acl(a, b~, . . . ,  bk-~) such that 

tp(b/a,  b~, . . . ,  bk-1, b') is strongly minimal, and similarly there exists a' E acl(a) 

such that t p (b l , . . . ,  bk-1, b'/~t,a') has rank k -  1, multiplicity 1. Applying the 

induction hypothesis to these these types and combining the result, we find a 

formula ~' E tp(b, b'/a, a') and ¢ '  E tp(a, a') such that whenever ¢ holds of ~', c', 

then ~'(~, x', ~, c') has rank k, multiplicity 1. Quantifying existentially over b' 

and a', we find ~" E tp(b, 2) and ¢"  E tp(a) such that ¢"(6) implies ~"(~,, 6) has 

rank k, multiplicity 1. Let ¢ '" E tp(a) be a formula such that whenever ¢'"(~) 

holds, then the symmetric difference of ~(~, 6) and ~"(~, 6) has rank < k. Then 

¢ = ¢ " ~ ¢ ' "  shows that the property holds. I I  

Proof of Remarks 2,3: Let D be disintegrated. The lemma holds trivially for 

strongly minimal sets of the form: { ( x l , . . . , x , ) :  xi = ai for i E S} where S is 

a subset of {1 , . . . ,  n} of size n - 1 (i.e. parallel to one of the axes.) But every 

strongly minimal subset of D" differs from such a set, or from a 0-definable set, 

by a finite set. This proves (2). 

Next suppose D is a strongly minimal group (with extra structure.) Again 

the lemma holds trivially for cosets of acl(0) -definable subgroups of D n. But by 

[HP] every strongly minimal subset of D" differs from such a coset by a finite 

set. Now by [H2], if D is locally modular, not disintegrated, then D interprets 

a strongly minimal group A. Moreover there exists a 0-definable equivalence 

relation E with finite classes on D, such that D I E  is A-internal. It follows that 

D I E  has the definable multiplicity property (using Remark 8). I 
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LEMMA 2: Let D be strongly minimal. Whenever ~o(E',~) defines a subset of D" 

of rank k, multiplicity ra, then for some ¢ E tp(a/@) and M >_ m, for all a ~, if 

¢(a') then ~o(~, a') has rank k, multiplicity <_ M. 

Proofi As in lemma 1 one reduces to the case m = 1. Let b be a generic 

solution of ~0(~, ~). Reordering the indices, we may assume that b l , . . . ,  bk are 

independent generics over ~. It follows that for some m _> 1, the formula: "for 

generic Yl,.-. ,Yk, there are exactly M ( n -  k)-tuples Yk+l,. . . ,Vn such that 

~o(~, ~)" is true of ~. This formula works for ¢. | 

LEMMA 3: Let K be an algebraically dosed field. Then K has the definable 
muttipliclty property. 

Proof." Let k be the ground field. By lemma I we may assume ~o(~, a) is strongly 

minimal. Let b = (b, b l , . . . ,  b,) be a generic solution of ~0(x, ~). We may assume 

b ¢ acl(a), so that b l , . . . ,  b,, • acl(a, b). Let k' = dcl(a, b) = O,,k(a, b) l/p". By 

the theorem of the primitive element, there exists c such that  k'(b) = k'(c). So 

dcl(a, b) = dcl(a, b, c). Let ¢ • tp(bc/a) be a strongly minimal formula. Then 

there exists a b-definable bijection between the solutions of ¢(xl  x2, a) and those 

of ~(~, a) (perhaps with finitely many exceptions). Hence it suffices to prove 

the definable multiplicity property for ¢. ¢ may be taken to have the form: 

Q(Z1, X2, ~}) = 0, where Q is a polynomial. To say that ¢(~,/~) is strongly minimal 

is to say that Q(xl, x2, [0 is absolutely irreducible, i.e. there are no non-constant 

polynomials Pl(xl,x2), P2(xl,x2)(with coefficients in K) such that Q = P1P2. 

Clearly it suffices to consider polynomials whose total degree is less than that 

of Q. The statement that no such polynomials exist is a first order statement, 

proving the lemma. | 

Remark: Let k be algebraically closed, k[X] = k[X~,... ,X,]  the polynomial 

ring. If f~ , . . .  ,fro • k[X], let I ( f )  be the ideal generated by { f l , . . .  ,fro}. The 

definable multiplicity property for algebraically closed fields is equivalent to the 

following statement: if I ( f )  is not a prime ideal, then there exist gl,g2 • k[X], 

if g~, g2 • I( f ) ,  gl q[ I( f ) ,  g~ qt ICf), with the total degree of gl, g2 bounded 

in terms of n and the degrees of the f 's .  This was proved in IS], and model 

theoretically in [D]. | 
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3. G e o m e t r y - p r e s e r v i n g  e x p a n s i o n s  o f  f ie lds 

Isr. J. Math. 

LEMMA 1: Let 1VI be an expansion of M, M Ro-saturated. Assume M has de- 

finable operations +,. making it into a field. I f  every unary function definable 

in IVI (with parameters) is definable in M, then every relation definable in 1~I is 

parametrically definable in M. 

Proof: The word "definable" will always allow the use of parameters. By induc- 

tion on n, we will show: 

(an) Every definable relation on .~t'n is definable in M. 

(bn) Every definable partial function f :  _hT/n ~ M is definable in M. 

For n = 1 (b) is hypothesized, and (a) follows. It follows from (al) that  M is 

strongly minimal. 

(an+l) Let R C_ Mn+l be definable. Let S be the projection of R to 117/n, 

and let Soo = {x E -~/": there are infinitely many Y E .~r with (~',V) E R}. 

Strongly minimal sets eliminate the quantifier "there exist infinitely many",  so 

Soo is definable in .~/, hence in M. Let 

R' = (Soo x M ) -  R 

R" = R -  (Soo x M) 

Then R = R" U ((Soo x M) - R') is definable from Soo, R', R".  By strong 

minimality, for all ~ there are (at most) finitely many y with (~,y) E R', and 

similarly for R".  Thus we may assume that this holds for R. In other words, 

letting S m =  {~ E M n : there are exactly m y such that (~,y) E R}, we have 

M n = S o O . . . O S M  for someM.  It suffices to show that R A ( S , n  x M) is 

M-definable for each m. 

For ~ E Sin, let bl , . . . ,bm be the set of all y with (~,y) E R, and let F~(~) be 

the polynomial r I ( x  - hi) = Z,i<,,ciX i. Let ci(a) = ci. Clearly ci is a definable 

function on Sin. By (bn), ci is definable in M. But then R n (Sin x D) = 

{(~, b): a E So, and ~ci(~)b i = 0} is definable in M also. This proves (a) ,+l .  

(bn+l) Let f :  ~r-+l  ~ ,~r be a definable partial function in/~/.  Let a E -~/ 

be a generic element, and let •: .~7/n __. M be defined by fa(~) = f (a,  ~). By 

(bn), there exists an M- definable function g coinciding with f~; we may write 

g(~) = G(~,~) for some parameter ~ e M k, so that G is defined in M without 

parameters. By the strong minimality of .~,  for all but finitely many a ~ there 

exists d E M ~ such that f~,(~) = G(d, ~). Let F be the finite set of exceptions. 

Clearly f is definable from f n (~rn x (M - F))  together with f , (c  e F)  and by 
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(b,) each fc is definable in M, so we may assume F = 0. 

Define an equivalence relation ,-~ on M k by: ~ ,-. c' iff (VY:)(G(~, Y:) = G(c', ~)). 

Then ~ is definable in M k. By elimination of imaginaries in M [P2], there exists 

an M-definable function h: M * ~ Mi  for some j such that ~ ~ c' iff h(~) = h(c'). 

Define G'(h(~), ~.) = G(?., ~). Then for each a E M there exists a unique d E M i 

such that fa(~) = G'(d,~) for all ~. So this d has the form (d~(a), . . . ,dj(a))  

where the di's are definable functions in it:/. By (bl), they are also definable in 

M. Hence f is also definable in M, by f(y,~.) = G'(dl(y) , . . .  ,d.i(y),~ ). This 

finishes the proof. I 

THEOREM 1: Let F be a strongly minimal expansion of an algebraically dosed 

~eld K. Let ko be the set of algebraic elements of F. Assume that the algebraic 

closure relations in K and in F coincide (over ko). Then every definable relation 

of F is del~nable in the field language from parameters from ko. 

Proof." We may assume F is N0-saturated. We state the hypothesis explicitly: 

for all z l , . . . ,  Xn, y E F,  if y is algebraic over x l , . . . ,  xn model-theoretically, then 

in fact y is the root of a non-zero polynomial from k0(Xl,.. .  ,z,,). For the facts 

from algebraic geometry used in the proof, see [L]. 

Let L0 be the language of fields, and let L be the possibly enriched language 

of F.  Let F* be F ~q as evaluated in L0. Note first that  if H is an L0-definable 

subset of F*, and has Morley rank k in L0, then it has Morley rank k in L. (This 

can be proved by induction, after co-ordinatizing H. For example if H is strongly 

minimal in L0, then there exists a (parametrically) L0-definable R C H × F such 

that for almost every h E H there exist finitely many (but at least one) a E F 

with (h, a) E R. Since R is also L-definable and F is L-strongly-minimal, it 

follows that H has L-Morley rank 1.) The problem is that the Morley degree 

may (on the face of it) go up. 

By lemma 1, it suffices to take a definable function f in F,  and prove that  it is 

L-definable (with parameters.) Say f is kl-definable, k0 C kl = acl(kl). Consider 

C = {(x, f(x)):  x E F}. C is strongly minimal. Let (a, b) be a generic element 

of C. By assumption, there exists a nonzero polynomial p E kl IX, Y] such that  

p(a, b) = 0. We may assume p is irreducible. Let C' = {(x, y): p(x, y) = 0}. 

Then C ~ contains C (but the degree of C I in L is unknown.) Let C" be the set 

of nonsingular points of C t. Let C be a complete nonsingular curve birationally 

equivalent to C ~, defined over kl, and let h be a 1 - 1 function, definable in 
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the language of fields, from C" into C. If h[C n C"] is a cofinite subset of C' 

then C O C" is cofinite in C",  so C = C" (modulo a finite set), and hence C 

is definable in the language of fields. So suppose h[C n C"] is not cofinite in 

C. If C is a rational curve, then it is definably isomorphic to the projective 

line F O {oo}. The image of h[C n C"] under this isomorphism gives an infinite, 

co-infinite subset of F U {vo}, which is impossible. So C has genus g > 1. Let A 

be the Jacobian variety of C, and consider C as a subset of A. In the language 

of fields C has rank g, degree 1: a generic element of A can be written uniquely 

as Zl + . . "  + zg, where (Z l , . . .  zg) is a generic element of C x - - .  x C (g times). 

It follows that C still has rank g in L. However, it no longer has degree 1. For if 

x l , . . ,  z~ are independent elenents of h[C O C"] and yl , . . . , y~ are independent 

elements of C - h[C O C"], then clearly zl + . . "  + zg, yl + "'" + yg are generic 

but do not realize the same type. Thus A is not a connected group, so it has a 

definable subgroup of finite index. But in reality A does not have subgroups of 

finite index at all. For in the language of fields, A is a connected group, and for 

each n{a E A: na = 0} is finite. Thus by a rank computation n A  = A. So every 

factor group of A is divisible, and hence the only finite factor group is the trivial 

one. This gives the required contradiction. | 

4. F u s i n g  t w o  s t r o n g l y  m i n i m a l  s e t s  

THEOREM 2: Let T1,T2 be strongly minima/theories with the definable mul- 

tiplicity property, in disjoint countable languages L1, L2. Then there exists a 

strongly minimal theory T in LI U Lz such that T[Li = Ti. Moreover, f f  D ~ T: 

(i) Li-definable subsets o l D  ~ have the same rank, multiplicity in the sense of  

T as of  Ti. T has the DMP. 

(ii) Let Vi C_ D ~ be Li-definable without parameters. Assume ~ avoids a/1 

diagonals (zv = zv,),  and dim(Vl) + dim(V2) < n. Then Vi n V 2 = ~. In 

particular, i f  V C_ D ~ is L1-definable and L2-definable without parameters, 

then V is a Boolean combination of diagonals. 

(iii) Let Vi C_ D n be Li - definable. Assume now that /'or every projection 

H : D ~ --* D m, and all b E D m, dim(V~ N H-l(b)) + dim(V2 n H-l(b)) _< 

n - m. Then V1 O V2 is finite. In particular, i/'D1 is not pure equality, then 

D is a proper expansion of D2. 
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COROLLARY: No strongly minimal theory in a countable language with the DMP 

is maximally strongly minimal. 

(This partially answers Cherlin's question whether there exist maximally strongly 

minimal sets, in a countable language.) 

Fix T1, T2. Without loss of generality every formula of Li is Ti- equivalent to an 

atomic formula, and Li has no function symbols. We also assume for notational 

simplicity that  Ti admits elimination of imaginaries. (In this connection one 

should keep in mind the following unpublished theorem of Lascar and Pillay: 

after adding constants to the language, the only sorts needed in T eq are those of 

the form [Dt]" = (Dk)n/(act ion of the symmetric group on n elements.) Indeed 

if acl(O) is infinite then acl(e) is always a model, so any e = d iE  e D eq has 

the form d~/E for some a * E acl(e). Thus c is equi-definable with the finite set 

{al l , . . . ,  ~ }  of conjugates of d' over e). 

The two principal tasks in the construction of T are the determination of 

theories of dimension and multiplicity. In particular if ~ is an Li- definable 

subset of n-space, we must determine the dimension (according to T) of V1 n V2; 

and if this dimension is 0, the cardinality of this set. In the former we will be 

guided by the dimension theorem: dim(V1) + dim(V2) + dim(V1 n V2) = n should 

hold "in general". The dimension of Vi itself will be the same in Di and in D. 

This gives a formula for dim(V1 n V2); a negative number will be interpreted 

as a finite intersection. If U is a projection of V1 n V2, and each fiber is finite 

for the above dimension-theoretic reasons, then dim(U) = dim(V~ n V2). These 

considerations suffice to assign a dimension to each L-definable set. 

DIMENSION: 

Consider an L1 U L2-structure N such that N[Li is a submodel of a model of 

Ti (i = 1, 2). (Equivalently, g ~ T v U T v, the universal restrictions.) 

If A is a finite subset of N, let di(A) be the Ti-rank of A, viewed as a finite 

subset of a model of T. Let do(A) = dl(A) + d2(A) - card(A). Let d(A, N) = 

min{do(B) : A _C B C_ N, B finite}. In the rest of this section, fix N and write 

d(A) for d(A, N). 

Dellnition: Let A C N be finite, C, B C N not necessarily finite. 

(i) do(A/B) = limB,--.B(d0(A U B') - do(B')) where the limit is taken over 

finite B ~ C_ B. It will follow from lemma l(i) that if A O B C_ B * c_C_ B"  then 

do(A U B") - do(B") < do(A U B') - do(B'). (Take A1 = A U B',A2 -- B",Ao = 
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B',A = A U B"). Hence the limit exists. 

(ii) B < C if B _C C and do(C'/B) >_ 0 for all finite C' C_ C. 

(iii) d(A/B) = min{d(A U B')  - d(B'): B' C_ B ,B '  finite }. 

LEMMA 1: A , B  are finite subsets of N. 

(i) 
(ii) 

(iii) 

(iv) 

(v) 
(vi) 

(vii) 
(viii) 

If  A C_ N,A = A~UA2,Ao = AIUA2, then do(A) <_ do(A~)+do(A2)-do(Ao). 

If  A < B < N then A < N. This holds also if B is infinite. Assume also 

O < N .  

If  A C_ N, A finite, then there exists a finite A' < N,A C_ A'. There is 

a unique smallest A' with this property (call it clo(A).) We have d(A) = 

d(clo(A)) = do(clo(A)). 

if A C_ B then d( A ) < d( B ). 

d(A/B) < d(A'/B) i rA C_ A'. If B C_ A, d(A'/B) = d(A/B) + d(A'/A). 

d(A/B) >_ d(A/B')  i f  B C_ B'. 

d(a/B) < 1 for a singleton a. 

The relation "d(a/B) = O"(a e N, B a finite subset of N) defines a depen- 

dence relation on N. This means: 

Monotonicity: if B C_ B', and d(a/B) = O, then d(a/B') = O. 

Transitivity: i f  d(a/B U {c}) = O, and d(c/B) = O, then d(a/B) = O. 

Exchange: if d(a/B U {c}) = O, and d(a/B) # O, then d(c/B U {a}) = O. 

Proof." 

(i) Clear from the corresponding inequalities for dl and d2. 

(ii) Let C be finite, A C_ C C_ N. do(C/BOC) >_ 0 since B < N. do(BAC/A) >_ 

0 since A < B. So do(C/A) = do(C/B O C) + do(B O C/A) >_ O. 

(iii) Choose A' finite, A C A' C N, with do(A') least possible. (Since 0 < 

A, do(A') is bounded below by 0.) Clearly A' < N. Suppose A1, A2 are two 

distinct minimal sets containing A with this property. Let A' = A1 O A2. 

A' 2~ A2, so for some A' 2 C_ A2,A2 C_ A~,d0(A~) < do(A'). Now do(A1 U 

A'2) < do(A1) + do(A'2) - do(A') < do(A~). This contradicts A~ < N. 

(iv) ,(v) Clear. 

(vi) Let A = clo(A U B),B = clo(B),B' = clo(B'). Then d(A/B')  = do(clo(/i U 

B') /B')  < do(AUB'/B') < (do(?t)+do(B')-do(AnB'))-do(B') = do(A)- 

do(A o B') <_ do(fi,) - do(B) (since/~ _< A O B')  = do(All1) = d(A/B). 

(vii) d({a} U B) = do(clo({a} U B)) <_ do((a) U do(B)) <_ 1 + do(clo(B)) = 

1 + d(S). 
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Monotonicity is given by (vi). Transitivity and the exchange property 

can be stated as follows: if d(a/Bc) = O, d(a/B) -fi O, then d(c/Ba) = 

O, d(c/B) ~: O. Evaluating d(ac/B) in two ways using the second part of 

(v), we get d(a/Bc) + d(c/B) = d(a/B) + d(c/Ba). Each of these four 

numbers is 0 or 1 (by (vii)), and the first and third are respectively = 0 

and ~ 0, forcing the same to hold of the fourth and second. I 

Definition: The dependence relation described in (viii) will be referred to as 

d-dependence. | 

Multiplicities are assigned only in "irreducible" cases. For example we need 

not consider the case V/=  V[ x Vi" , where V1 n V~ = (V~ n V~) × (VI" o V~') and 

so the cardinality assigned to the pair V1 N V~ can be computed from those of 

V~ O VJ and V[' n V2". We are concerned with the variation of the multiplicity 

with a parameter, when V1, V2 move in a definable family. We prepare the ground 

by choosing a family of representatives for the sets ~ defined in Li with good 

normality and definability properties. 

Definition: Let D be a strongly minimal set. A normal code for D consists of 

the following data: 

(i) An integer m, and a formula ¢ ( f f l , . . . ,  y_m). 

(ii) A definable function f ( y q , . . . ,  Y-m). 

(iii) A formula ~(~, fi). 

(iv) A formula 8(fi) such that whenever 8(b) holds: 

(a) V = C(b) =de/ {~: ~(~, b)} has rank k, multiplicity 1. If ~, ~ E C and 

xi = x i then yi = yj. 
(b) ¢ is true of any m independent realizations of C. 

(c) f takes the constant value b on m-tuples of realizations of C satisfying ¢. 

(d) Let ~ = ~1 ^~2 be any partition of the variables ~ into two sets. Then for 

any b such that ~ 0(b), if for a generic 5 E C(b), a = ~1-~2, {~2: al,  ~2) E C(b)} 

has rank j ,  then for all ~ ,  {~2: (~ ,~z)  E C(b)} has rank _< j .  

(e) If ~1, . . . ,  ~,~ E C and ~ is an element of C generic over ~1, . . . ,  ~,~ then 
¢(~, ~ 1 , . . . ,  ~ra--1). 

~b is symmetric in its arguments. 

¢, f ,  qa, 8 are assumed to have no parameters. 

Write re(c), ~o, y~, 00, ~ ,  n(c), k(c). If ~ O,(b), we say that (c, b) is a normal 

code for (C, b). 
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In an algebraically closed field, we would require Ci to be a closed set, ensuring 

that if two sets with a normal code agree a.e., then they are equal. In general we 

have to make arbitrary choices. 

LEMMA 2:  Let D be a strongly minima/set  D in a countable language. Assume 

D has the definable multiplicity property. There exists a set S of norton/codes 

such that: 

(i) I f c , , c2  E S,n(cD = n(c2),k(c~) = k(c2) = k, and for some a l , a ~ , ~  

0~, (?~i), and the symmetric difference of {z: ~1  (~, all)} and {~: ~2(~ ,  if2)} 

has rank < k, then cl = c2 (and aj = d2). 

(ii) For any definable C C_ D" of  multiplicity 1 there exists C' C_ D" agreeing 

with C up to a set of rank < rk(C), such that C' has a normal code (c, b) 

with c in S. 

(iii) I f  c E S, and c' is obtained from c by permuting some of the variables in 

then c' E S. 

Definition: Choose such a set of normal codes for D1 and for D2, and call them 

the s t a n d a r d  codes. I 

Proof of lemma: 

If C *, C" are two definable sets of rank k, multiplicity 1, write C'  ,~ C" for 

rk(C*AC ") < k. We first explain, given a single definable set C' C_C_ D n of rank 

k, multiplicity 1, how to find C ,,, C' such that C has a normal code. First find 

C and m, q0, f ,  t9, ~b, b such that (a)-(c) hold. (d) is then met by strengthening qo 

appropriately; this may change C but only inside its ~ - class. Finally replace C 

by the conjunction of all formulas of the form: 

- i  . - i  - i  ~1 ~, . . .  (V* '~) (V*x2) ' " (V*~I )¢  (z"z2 ' " "  ," S+' ' x : )  

where (V* fi) means: for a generic fi such that T(fi, f ( X l , . . . ,  Zm)), f ranges over 

0,1, . . . ,m,  a ranges over Sym(m), and ¢~ has the natural meaning. It is then 

easy to check (using (c) for ¢) that (e) holds of the conjunction. 

Next we use the countability of the language to find a family of normal codes 

satisfying (i) and (ii). Since (ii) is true of C iff it is true of a conjugate of 

C, we may assume D is countable. To choose the set of standard codes for 

rank k subsets of D",  let C0,C1, . . .  be an enumeration of all rank k, mul- 

tiplicity 1 definable subsets of D".  Choose a normal code cl for Ci induc- 

tively. Assume standard codes ci have been chosen for Ci (i < f ) ,  satisfying: 
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~oc, (~, a) =} G, (~). If some ci (i < f )  is also a normal code for some set agreeing 

with C l up to a set of rank < k, let c! = ci. Otherwise, let c be any normal 

code for a set C ~ agreeing with C I up to rank < k. Let O~(fi) be the formula: 

,~ (3O)(rk{~: ~0c,(5:,~)}A{£: ~oc(~,fi)} < k). Then ~ 0~(a). Let c I be the result 

of modifying c by replacing 8¢ by 0¢f = 0,&0~&... &0~, i, and replacing qo¢ by 

~o,&O¢ I. It is easy to see that this construction provides a set of codes satisfying 

(i) and (ii). 

In order to meet (iii), the following modification is needed. For a E Sym(n), 

let C a = { ~ :  £ E C}, and let c a be the code obtained from c in the natural 

manner so that  if (c,/0 is a code for C, then (c a,/J) is a code for C a. l 

CLAIM: Let C C_ D n be a definable set of rank k. Then there exists a normal 

code (c,/~) for a set C(/~) agreeing with C up to rank < k, such that the family 

of codes {ca: a E Sym(n)} satisfies (i). 

Proof: The point is that c must have the following property: if (c, b) and (c a, ~7) 

are codes for the same set (up to rank < k), then c = c a. Start with any normal 

code (c, b0) for C (we may assume one exists.) Let B be the set of conjugates of 

b0. Let G = {a E Sym(n): for some b~ E B, C~(b) ,~ C(b~)}. Clearly G is a 

subgroup of Sym(n), b~ is defined uniquely for b E B and a E G, and b H ba is 

a definable action of G on B. By compactness, we may strengthen 0 so that if 

0(b) and ~ 0(b') and a • G then C~(b) # C(/¢). 

We may further strenghten 0 so that if ~ 0(b) and a E G then there exists 

b~ such that  C~(b) ,-, C(b ~') and ~ 0(b~). Thus the action of G extends to an 

action on {fi: 0(fi)}. Let Q be the quotient of the set by this action, and let 0' be 

a formula defining the quotient. If b/G E Q, then O~eaC(b ~') is definable from 

b/G, and agrees with C(b) up to rank < k. Now it is easy to find a code c' with 

Oc, = 0 ~ meeting the claim. 

Assume cl (i < f )  have been defined so that ci is a code for Ci, and (1) 

holds for {c~': i < f ,  a E Sym(n)}. Find a normal code (c, b) for C I satisfying 

the claim. Now follow the procedure above to find cl such that (1) holds for 

{c~': i _< f ,  a E Sym(n)}. I 

Definition: 

such that: 

(i) n(C 1) 

A 2-code is a pair (c 1, c 2) of standard codes for Lx, L2 respectively, 

= n ( C 2 )  = k (c l ) .+k(c2) .  
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Let 2 = ~,l ̂ 22 be any partition of the variables 2 into two sets, with 2 i of 

length n / > 1. Then for some kl, k2 with kl + k2 > n 1, 

(ii) 7'1 ~- for all fi such that 0c,(fi), and all x 1, {x2: ~c,(x I x2,~)} has rank 

< k ( c l )  - h -  

T2 b for all fi such that 0c,(fi), and all x l, {x2: cp~,(x 1 x2,fi)} has rank < 

k(cs )  - ks. 

Note that (k(cl) - kl) + (k(c2) - k2) = n - (kl + k2) < n2. If kl, ks are chosen 

maximal, taking into account (iv)(d) of the definition of a normal code, we have: 

(iii) T1 t- for all fi such that 0¢1(fi), {xl: {z2: ~o¢,(x 1 x2,fi)} has rank > k ( c l ) -  

kl } has rank kl. 

T2 L- for all fi such that 0c,(fi), {xl: {x2: ~ 2 ( x  1 xs,fi)} has rank _> k ( c 2 ) -  k2} 

has rank ks. 

(If the rank of {xl: {xS: ~ct(x '  x2,fi)} has rank > k ( c l ) - k , }  were > or < kl, 

then the rank of {2: ~¢,(x 1 x2,fi)} would be > or < k(cl).) We further demand: 

(iv) 7"1UT2 ~- for all fi such that 0~t(~) and 0c2(fi ) and all £ such that ~o~,(~, a) 

and qo~2(2,fi), x l , . . .  ,z,, are distinct. 

Let n(c) = rt(c 1) = n ( c 2 ) ,  re(c) : max(m(c 1), m(c2)), l 

LEMMA 3A: Let c be a 2-code. Let N be an L1 U Ls-structure, NILi ~ T v, M 

a substructure, bl,b 2 from M, A = {a l , . . .  , a ,}  C g , a  = ( a l , . . .  ,a,,), ~ 0c,(b i) 

and ~oc,(a, bi)(i = 1,2). 

(a) d0(a/M) < 0 

(b) l . fdo(a/M) = 0 then A C_ M or A f3 M = 0 

(c) If do(a/M) = O, A' c_ A, and do(A'/M) <_ O, then A G M or A' = A or 

A I = O. The same conclusion holds i f  b i lies ha N i, where N i is a model of 

Ti extending N,  and ~i iS detinable over M in N i. 

Proof: 

(a) Let B be a finite set of parameters from M such that bi is definable over B in 

N i. Because of our assumption of quantifier elimination for Li, d i (a/B)  < 

k(c~). So do(a/B) = dffa/B)  + d2(a/B) - n < O. 

(b) By (iii) of the definition of a 2-code and the note following (let 21 ̂ 22 be a 

partition of the variables corresponding to A = (A (3 M)  U (A - M)).  

(c) By (a) and (b) applied to M U A' in place of M, either A = A' or A' = {} 

or A C M or d'o(A/M U A') < 0. In the last case, since also do(A' /M) < O, 

we have do(A/M) < 0, a contradiction. | 



Vol. 79, 1 9 9 2  EXPANSIONS OF ALGEBRAICALLY CLOSED FIELDS 143 

Let acli denote algebraic closure in the sense of Ti. 

LEMMA 3B: Let N be a model of with T v U T v with 0 < N,  and B C N.  Let 

A C N be tlnite, do(A/B)  = O, A # $, and assume there is no proper nonempty  

subset A' of A with do(A ' /B)  < O. Let a enumerate A. Then there exists a 

unique 2-code c, b -Y E acl,(B), and b -~ E acl2(B) such that N ~ O~,(b i) and 

~c,(~t, bi)(i = 1, 2). 

Proof." Let c~,c 2 be the unique standard codes such that N ~ Oe,(b i) and 

~0,,(5, bi)(i = 1, 2). A partition of the variables corresponds to a proper nonempty 

subset A' of A. Let kl = di(A'). Then k~ + k2 - nl = do(A ' /B)  > 0. (ii) of the 

definition of 2-codes follows from (iv)(d) of the definition of normal codes. 

THE THEORY T. 

DATA. A finite-one integer valued function #* defined on 2-codes, satisfying: 

(i) p*(c) _> re(c) - 1 

(ii) #*(c) = #*(c') if c differs from c' only by a permuation of the variables 

X l , ' ' .  ~Xn(c). 

Let p(c) = m(c)n(c) + p*(c). 

Given a 2-code c and an integer M >_ m(c), let O~(u~,u2,~i-,... ,0-~) be the 

conjunction of the following conditions: 

- {Y~,t: 1 < v < M, 1 < 1 < n(c)} is a set of M .  n(c) distinct elements. 

- ee' holds of each m(ci)-tuple of yj's (i = 1, 2) 

_ f c i ( f f l , . . .  , f i r e ( e l ) )  = ~ i ,  ax ld  0ei(~ ''~) holds (i = 1,2) 

- ~ac , (~ j ,  ~ i ) ( i  = 1 , 2 , j  = 0 , . . . , M  - 1) .  

Note that  Oc is the conjunction of an Ll-formula and an L2-formula, O~ -- 
1 2 O~&O~. Let 

oo '~ (#,, .  . . ,  #=) = oo(fo, ( m , . . . ~  - , w , , ) ) , f c , ( # ~ , . . .  , v , , , ) ) , # ~ , . . .  ,,2,,,) 
o'~ ,1 ,2 = O, &O, 

UNIVERSAL AXIOMS. 

(i) The universal parts of T1 and of T2. 
Ot  - (ii) e(Yl,.- ,~m) has no solutions if M > ~(c). 

(iii) Every model N of T satisfies 0 _< N. 
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Explicitly: For each pair ~a~(~'), ~p2(~') of formulas of L~, Lz respectively in n 

variables defining sets of ranks kl, k2 respectively with kl + k2 < n, the sentence: 
~ # 

V~ AXIOMS. 

(iv) Axioms stating that if M ~ T, then MILl is algebraically closed (as a 

submodel of a model of Ti). 
(v) For each 2-code c = (c 1, c2)) and integer L, an axiom (vc) stating: For all 

ill, ~2, W, if 6c,(~ i) holds, and W is a set of n(c)-tuples of size L, then one 

of the following: 

(a) (3~)(~ • W and ~c,(~,~ 1) and ~c2(~,fi2)), 

(b) (3~-T,... ,y--~ E W)Oc(fil,fi2,~-T,... ,Y-Or) where r = #(c). 
o r  

(c) For some 2-code d and some choice of variables ff as explained below, 

(3~ - ~)(for i = 1, 2)(V • ~ s.t. qa¢, (5, a ' ) )(O 3 (~20, • • •, ~2#(,,))) 

where notation in (c) is as follows: 

y~ = ( u ~ , l , . . . ,  u~, , (e)) ;  
if v >_ m(c')n(c'), then Y~,t = x1 (one of the variables in 5); 

if v < m(c')n(c'), then y~,~ may be either some xj or a new variable; 

(3~ - ~') quantifies out those yi,t that do not appear also as x's; 

(V* ~' . . .)  means: {5:: . . .} has rank > k(ci). 
Recall that O'c / fails if any two of its arguments are equal. Hence the y,,,t's 

may be taken to be distinct variables. Such a choice of y~,t from among the xj's 
(v >_ m(d)n(c')) is only possible if (p(c') + 1 - m(c')n(c'))n(c') < n(c), and in 

particular p * (c') < n(c)/n(c'). Since p* is finite-one, only finitely many 2-codes 

c' are involved. 

In words: c has a solution outside W, unless W contains a "maximal" set of 

solutions, or for some c ~, adding a generic solution of c would create too many 

solutions of c ~. The word "maximal" is in quotes since there may well be more 

than p(c) solutions to qae,(~, bl)~pe2"~,b2). 
Similarly, (a),(c) are not mutually exclusive; (c) only rules out the possibility 

of a solution generic over W. Also, for given parameters, the axiom has the 

nature of a disjunction, stating that  either c or (some) c' have solutions, but not 

resolving which. 
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~ '  AXIOMS. 

(vi) Axioms ensuring that  in a saturated model M of T there exists an infinite 

d-independent set I.  

We will sometimes refer to subtheories of T such as T(i,iii). T v means T(i,ii,iii). 

LEMMA 4: Suppose M is a model o f T  v such that: 

(a) There ex/sts an imqnite d-independent I C_ M.  

(b) Whenever M < N,  N ~ T v, ~(~,.~) a quanti/ier-free formula, b from M, 

= d  N 9), then M 9). 
Then M is a model of T. 

Because of the dimension restriction, (b) may be referred to as "d- existential- 

closure." 

Proof." Assume (a),(b) hold. Only axioms (iv),(v) need to be verified. | 

CLAIM: Let n = MU {a} be an L1 UL2-extension of M,  N ~ TVlOTV 2 . Suppose 

a ~ acl(M) - M in the sense of 7"1, and a ~ acl(M) in the sense of L2. Then 

N ~ T  v. 

Proof'. M < N is clear. Hence $ _< N, by lemma l(ii). 

Suppose O 'c (a l , . . . , a r )  holds, r > #(c). Note that  n(c) > 1, and exactly one 

a i does not lie in M; say ar, n = a and the other a~,t's are in M. By lemma 3A 

applied to ~r, do(?t~/M) < 0. This contradicts M _< N. | 

CLAIM: M ~ T(iv). 

Proof: Suppose for contradiction that MILl  is not algebraically closed (for 

example). Let N = M O { a }  be a model of T v, M a submodel, such that 

a E acl(M) - M in the sense of T1. Make N into an L2-structure so that  a 

is an independent generic over M (i.e. a ¢ acl(M)). By the previous claim, 

M < g and g ~ T v. Let ~(x,.~) be an L~-formula over M such that 7"1 

(V~)(Vx0 . . .  x,n)( if Ai ~(xi,  ~) then Vicjxi = xj) ,  and M ~ ~(a, b), b from M. 

Let S be the (finite) set of solutions of ~(z, b) in M. Then a is a solution of 

~(x, b)&z ¢ S. Since M is d-existentially closed, M contains a solution of this 

formula; a contradiction. | 

CLAIM: Let N = MU{ax , . . . , a , , } ,  N ~ T(i), M < N. Let cbe  a2-code, bl,b 2 

from M, and suppose N ~ ~¢,(a, M). Then one of the following holds: 
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(a) N ~ T v 

(b) There exist a ° , . . .  ,a  r°-I in M, O c ( b l , b 2 ; a ° , . . .  ,~ro--1), ro ____ ~(C).  

(c) There exists a 2-code c', rl _< m(c ' )n(c ' ) ,a° , . . ,  a r1 -1  from N, and 

a rt . . . , a  r from { a , , . . . , a n } ,  r #(c'), such that ' -0 , - = Oc,(a , . . .  ,a  r) holds. 

Proof." Suppose (a) fails. N ~ T(i) is assumed, and T(iii) follows from this 

and the assumptions 0 _< M _< N. So T(ii) fails in N: for some 2-code d,  

r #(d)  + 1, there are a °, a r from N such that N ~ ~ -0 . . . .  , Oc,(a , . . . , a t ) .  Note 

that  the coordinates of a ° , . . . , a  r are distinct. Using the symmetry of O ~, let 

a ° , . . .  ,a  *°-1 be those ai's lying entirely in M, and let a ° , . . .  ,a  rt-1 be the ads 

with some co-ordinate in M. 

Let 
k(i)  = do (a i /M U {a° , . . . ,  a i-1 }). 

Then b y l e m m a 3 A ,  k(i) < 0  if i > _ m ( c ' ) , a n d k ( i )  < 0 u n l e s s a  i f 3 M = 0 o r  

a i C_ M. So k(i)  < 0 if max(r0,m(c')) < i < rl .  | 

CASE: rO >_ m(c') 

If r0 = r then all ai's are in M, contradicting M ~ T v. So a *° exists and is 

not entirely in M. Now do(dr° /M)  = k(ro) < 0; since M < N ,  d ( a / M )  = 0; by 

lemma 3A, this implies h TM = a s for some permutation a of the variables. By 

the definition of standard codes, and the uniqueness part of lemma 3B, d = c a, 

ro = r - 1 = #(c') = #(c") = #(c). So (b) holds. 

CASE: r0 < m(¢'). 
~i<r,k( i )  = d0(a°, . . .  , a r t - l / M )  > 0. 

For i < m(c'), k(i) <_ (n(c') - 1) (since a i has n(c') coordinates, at least one 

of which is in M). 

For m(c')  < i < r , ,  k(i)  < 0. Thus Ei<r, k(i)  < ( m ( c ' ) n ( c ' ) -  1 ) -  ( r , -  m(c')) .  

0 < m(c ' ) (n(c ' )  - 1) - (rl - m(c')), or r~ _< m(c')n(c ') .  This gives (c). 

CLAIM: M ~ T(v) 

Proo~ Let c be a normal code, b~, b 2 from M, ~ 0,, (b~). Let W be a finite set 

of n(c)-tuples from M. Let { a l , . . . ,  a ,}  be new elements, N = MU { a l , . . . ,  a ,};  

make N into an Li-extension of M in such a way that N ~ qo,~(fib i) and 

d i ( a / M )  = k(ci). So do(a /M)  = n - k(cl)  - k(c2) = 0. By lemma 3A, M < N. 

So one of the possibilities of the previous claim applies. If (a) holds, then in 

Nqo,x (~l)&qo** (~', ~2) has a solution outside W, so as M is d-existentially closed 
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this must  also be true in M. If  (b) holds, there are two cases: either one of the 

ai,s is outside W (so the first alternative of axiom vc holds again) or they are all 

in W, so the second alternative holds. If (c) is the case, let yv,t = z i  where the 

l ' th  co-ordinate of av is aj.  Then (c) of the axiom is immediately verified. 

LEMMA 5: Let M be a model of T(i-iv). Let ~i(~2, ai) be an Li-formula over 

M in n variables of rank ki, and let J be a set ofpairwise disjoint solutions of 

~l&q2 in M. If  kl + k2 < n, then J is finite. 

Proof: By induction on n. Suppose on the contrary that  J is infinite. Replacing 

J by a subset (twice), we may assume that  J forms a Morley sequence in MILi 
over a finite set A D_ ai(i = 1, 2). Let k ~ = di(~/A)(~ E J). Then k i < ki. Let 

Jm be a subset of J of size m. Then di(J,n/A) = mk ~, while A U UJ,~ has size 

IAI + mn. (The latter uses the fact that  the tuples enumerate palrwise disjoint 

sets.) So do(A U UJ,~/A) = m(k 1 + k 2 - n) > -do(A).  For large m this implies 

k 1 + k 2 - n > 0. Hence k I + k 2 > n > kl + k2. So k i = ki and kl -4- k2 = n. Thus 

do(f/A) = 0 for c E J .  

If there is some proper sub-tuple c t of ~ with do(d/A)  = 0 we get a contradiction 

to the induction hypothesis. Otherwise, by lemma 3B, there exists a 2-code c and 

~i E acli(A) (in M)  such that  M ~ Oc,(b i) and ~0c,(5, bi). Thus by the definition 

of a normal  code, ~ ¢~, ( a l , . . . ,  ~")  for any a l , . . . ,  a "~ from J (m = m(cl)). Now 

the fact that  J is infinite contradicts axiom (ii). | 

LEMMA 5 ~ : Let M be a model of T(i-iv), let c be a 2-code, and let ~t 1 , ~t 2 be tuples 

from M such that M ~ 0c,(ai). Then there are only finitely many  n(c)-tuples 

in M such that ~ Wc,(Y~,ai)(i = 1,2). 

Proof: Suppose on the contrary that  J is an infinite set of such tuples. Again 

we may assume that  J forms a Morley sequence in M[Li over a finite set A _D 

a -x (i = 1, 2). Let A i be the set of co-ordinates of the i ' th  tuple in J .  We may 

assume that  the Ai's form a/X-system,  i.e. that  A i f3 A j = Ao for i # j .  Let 

A = A0 U {a 1, a2}. By the previous lemma, the Ai's cannot be palrwise disjoint, 

s o A  i N A  # 0. Since there Ai's are distinct, A ~ ~ ( A U A  ° U . . . U A i - ~ ) .  By 

lemma 3A, do(A~/A U A ° U . . .  U A ~-1) < 0. Thus do(A U A0 U . - .  U A")  < 0 for 

large n, a contradiction. | 

LEMMA 6: Let B1,B2 be submodels of models Mi ,M2 o f T  such that Bi <_ Mi 

and d( M~/ Bi) = O. Let f: B1 ~ B2 be a bijection preserving the atomic relations 

of L1 tA L2. Then f extends to an isomorphism M1 ~ M2. 
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Proof: By symmetry and exhaustion, it suffices to show that if B1 ~ M then f 

can be properly extended to another map meeting the same conditions. | 

CLAIM: f extends to an atomic isomorphism of acl~(B1) with acll(B2). More- 

over, acll(Bi) < Mi. 

Proo£" If E C acll(Bi) - Bi, card(E) = n > 1, and d2(E/Bi )  < n, then 

for any sufficiently large F _ Bi we find that do(E /F)  < 0, contradicting the 

assumption Bi < Mi. Thus acll ( B i ) -  Bi is a set of independent generic elements 

over Bi in MilL2. Thus any bijection of acl~(Bx) with acll(B2) extending f is an 

L2-isomorphism. So any extension of f to an Ll-isomorphism of acll(B1) with 

acl~(B2) will satisfy the requirement. The fact that acll(Bi) < Mi follows from 

Bi < Mi together with the observation that do(E/Bi )  = 0 for E C_ acl~(Bi). 

We are reduced to the case that Bi is algebraically closed in the sense of L1, 

and similarly in the sense of L2. We may assume B1 = B2 = B and f is the 

identity. Let a0 E M1 - B. Then d(ao/Bo) = 0 for some finite B0 C B. So 

for some A = {a l , . . .  , a , }  C_ M~ - B and some finite Bo <_ B,  do(A/Bo)  = O. 

Choose A with n _> 1 least possible. 

Let ki = di(a/B) .  By lemma 3B, there exists a 2-code c with n(c) = n, 

k(c i) = ki, and ~1,~2 E B, such that M1 ~ ~c,(a, ei). 

Let W = {~" E B":  ~ q0~,(~',ei), i = 1,2}. By lemma 5', W is finite. By 

axiom (v) in M2 one of the following cases occurs. 

CASE A: There exists a "7 E M~' - W such that ~ Tc,(a"7,Fi), i = 1,2. 

In this case extend f to B U {a} by mapping a to a -7. Since a -7 E W , ~  does not 

entirely lie inside B. As B < M2, do(-J/B) >_ O, so by lemma 3A do( '~/B) = 0 

and a' lies entirely outside B. Thus d l (a ' /B )+d2(a ' /B )  = n. Since ki > d i (a ' /B)  

and kl + k2 = n, d i (a ' /B)  = ki. Now qoc,(~ , ~i) determines a unique type of rank 

ki; so the Li-type ofa '  over B equals that o fa  ~ over B. So f is indeed an L1UL2- 

embedding. The fact that B U {a} < M~ and B U {a'} < M2 again follows from 

do(a/B)  = O, do(a ' /B)  = O. 

CASE B: There are a l , . . .  , a t  in W, r = #(c), 0c(~1,~2,al,... ,at). 
By part (e) of the definition of a normal code, since a is a generic realization 

(from the point of view of MI[Li) of the set coded by (ci,~i), we also have 

Oc(g~, g2, a l , . . . ,  at ,  a). This contradicts axiom (ii) in M1. 
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. . . .  , I M U  CASE C: Let a' realize tp(a/bi) ,  a' .-LM2[bi, A' {a~, a , } ,  M '  = A'  

(a model of T v U TV). Then for some 2-code c' and some 50 . . . .  , a~(c,) from 

M2 U A t, O'c,(a0,... ,a,(c,)) holds. Moreover ai E A 'n<c') for i >_ m(ct)n(c ' ) .  Let 

r = p(c') ,  r, = r - m(c ' )  + 1. As p * (c') >_ m(c ' )  - 1, rl >_ m(ct)n(c ' ) .  Let d i = 

f~, , (2r , , . . .  ,2r) (the last m(c ' )  2i's.) Then ~0c,,(2j,d i) holds for j = 0 , . . .  ,p(c'). 

By lemma 3A applied to c', do(21/A'  ) <_ O. I 

CLAIM: Each 2j lies in B U A'. 

Proof'. Fix j and suppose 2j does not lie in B U A t. Let c1 be the part of 2j 

outside B U A t. Then ~j ~LAtlB in the sense of both LI and L2. As B _< M2, 

do(~ i /B)  > 0; so do(~ j /B  U A t) >_ O. Eqivalently, do(21/B U A t) > O. By lemma 

3A again, do(21/B  U A t) = 0 and 2 i = ej. It follows that 2 i is a generic solution 

over B U A' of the Li-set coded by (c 'i, d i). Since 2 i .-LA' [B and d i is the canonical 

base of tp (~ / /B  U A'), d ~ must be Li-aigebraic over B. As B is Li-algebraicaily 

closed, d ~ is from B. But then do(2r /B )  = 0. By 3A(c), it follows that  2r 

enumerates all of A t, so #(c t) = r = 0, a contradiction. 

Thus the atomic type of B U A t contradicts axiom (ii) for c'. This is a con- 

tradiction since the same type is realized in M1 (by B U A). So case (c) is not 

possible. | 

COROLLARY: Let BI, B2 be submodels of models M1, M2 of T such that Bi _< 

Mi. Let f :  B1 ~ B2 be a bijection preserving the atomic relations of L1 U L2. 

Then f is a partial elementary map. 

Proof: First observe that if ~'/i is an elemtary extension of Mi, then Mi ~ ~/i. 

Indeed if A C_ Mi - Mi  is finite and d o ( A / B )  < 0 where B C Mi is finite and 

A N M~ C_ B, then there exists A' C M~ with d o ( A ' / B )  < 0. If we choose 

B = clo(B) in M, this is not possible. 

This allows us to assume that the dimension of M1 over B1 in the sense of 

d-dependence equals that M2 over B2. Let Ji be a d-basis for Mi over Bi, and 

extend f to a bijection f :  B] U J1 ~ B2 U J2 arbitrarily. The hypotheses of 

lemma 6 are easily verified, and so f extends to an isomorphism of M1 with M2. 

Hence f is elementary. | 

COROLLARY: Let M be a model of T. The dependence relation described in 

lemma l(viii) coincides with algebraic closure in M. 

Proof: In one direction, we must show that if d ( a / B )  = 0 then a E acl(B). We 
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may assume B is finite. So d(a /B)  = 0 means do(clo({a} U B))  = do(clo(B)). As 

acl is transitive, it suffices to show: 

(a) clo(B) C_ acl(B) 

(b) If B = clo(B), C = B U {a l , . . .  ,an}, C = clo(C), do(C/B)  = 0, and there 

is no proper subset of C properly containing B with the last two properties, 

then C C_ acl(B) 

(a) follows from lemmas 3B and 5'. (b) requires only axioms (i) and (iii), and 

is left to the reader. 

Conversely, suppose d(a /B)  ~ 0; we want to show that a • acl(B). We may 

assume B = clo(B). Let N be a model of T such that B _< N and there exists 

an infinite set I _ N, d-independent over B. By the previous corollary, for each 

c E I there exists an elementary embedding of M into N with a ~ c. Thus 

a ¢ acl(B). | 

COROLLARY: T is complete, consistent and strongly minimal. 

Proof." Consistency follows from lemma 4: let M0 be an infinite independent 

set for Di as an Li-structure. Then it is clear that M0 satisfies T v. Let M be a 

d-existentially closed model of T v extending M0. Then M ~ T. 

By the previous corollary and lemma 6 we have the hypotheses of the following 

claim, which therefore finishes the proof. | 

CLAIM: Let T be a theory. Assume: 

(a) Algebraic closure gives a dependence relation on any model of M. 

(b) Any bijection between transcendence bases of models of T extends to an 

isomorphism of the models. 

Then T is complete and strongly minimal. 

Proof: If T~,T " are two completions of T, one can find models M*,M" of the 

dimension JTI; then by (b) M'  ~ M "  so T' = T".  For strong minimality, let 

A be a finite subset of a model of T, and let E be an A-definable equivalence 

relation on elements; we must show that all but one class is finite. If this fails, 

choose A as small as possible. If A' C A C acl(AI), consider the intersection of 

all conjugates of E over A~; it too must have more than one infinite class. Thus A 

is independent. Pick independent over A elements a, b, c with a, b in one infinite 

E-class and c in another; by (b) the map fixing A and a and exchanging b, c is 

elementary; a contradiction. This shows A is strongly minimal. | 
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